Automatic prediction of tumour malignancy in breast cancer with fractal dimension
نویسندگان
چکیده
Breast cancer is one of the most prevalent types of cancer today in women. The main avenue of diagnosis is through manual examination of histopathology tissue slides. Such a process is often subjective and error-ridden, suffering from both inter- and intraobserver variability. Our objective is to develop an automatic algorithm for analysing histopathology slides free of human subjectivity. Here, we calculate the fractal dimension of images of numerous breast cancer slides, at magnifications of 40×, 100×, 200× and 400×. Using machine learning, specifically, the support vector machine (SVM) method, the F1 score for classification accuracy of the 40× slides was found to be 0.979. Multiclass classification on the 40× slides yielded an accuracy of 0.556. A reduction of the size and scope of the SVM training set gave an average F1 score of 0.964. Taken together, these results show great promise in the use of fractal dimension to predict tumour malignancy.
منابع مشابه
Prediction of Breast Tumor Malignancy Using Neural Network and Whale Optimization Algorithms (WOA)
Introduction: Breast cancer is the most prevalent cause of cancer mortality among women. Early diagnosis of breast cancer gives patients greater survival time. The present study aims to provide an algorithm for more accurate prediction and more effective decision-making in the treatment of patients with breast cancer. Methods: The present study was applied, descriptive-analytical, based on the ...
متن کاملFractal Study on Nuclear Boundary of Cancer Cells in Urinary Smears
Background & Objectives: Cancer is a serious problem for human being and is becoming a serious problem day-by-day .A prerequisite for any therapeutic modality is early diagnosis. Automated cancer diagnosis by automatic image feature extraction procedures can be used as a feature extraction in the field of fractal dimension. The aim of this survey was to introduce a quantitative and objective...
متن کاملDiagnosis of B-CLL Leukemia Using Fractal Dimension
Background:Leukemia is cancer of blood and bone marrow cells. In general, there are four types of leukemia: chronic myelogenous leukemia (CML), acute myeloid leukemia (AML), B-cell chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). Fractal geometry can be introduced as one of the effective ways to detect this type of cancer. In this study, with introduc...
متن کاملBioinformatics-Based Prediction of FUT8 as a Therapeutic Target in Estrogen Receptor-Positive Breast Cancer
Abstract Introduction: Estrogen receptor-positive (ER-positive) breast cancer is a subgroup of breast tumors that is more likely to respond to hormone therapy. ER-positive and ER- negative breast cancers tend to show different patterns of metastasis because of different signaling cascade and genes that are activated by estrogen response. Genetic factors can contribute to high rates of metastas...
متن کاملBioinformatics-Based Prediction of FUT8 as a Therapeutic Target in Estrogen Receptor-Positive Breast Cancer
Abstract Introduction: Estrogen receptor-positive (ER-positive) breast cancer is a subgroup of breast tumors that is more likely to respond to hormone therapy. ER-positive and ER- negative breast cancers tend to show different patterns of metastasis because of different signaling cascade and genes that are activated by estrogen response. Genetic factors can contribute to high rates of metastas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2016